소스 뷰어
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 1. 이미지 불러오기
image = cv2.imread('morphology_j.png', cv2.IMREAD_GRAYSCALE)
# 2. 이진화 처리 (이미지가 이미 이진화되어 있지 않을 경우)
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
# 3. 다양한 커널 정의 (모든 커널은 5x5 크기)
kernels_and_operations = [
(cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)), "Square Kernel", [
(cv2.MORPH_OPEN, "Opening"),
(cv2.MORPH_CLOSE, "Closing"),
(cv2.MORPH_GRADIENT, "Gradient"),
(cv2.MORPH_TOPHAT, "Tophat"),
(cv2.MORPH_BLACKHAT, "Blackhat")
]),
(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)), "Ellipse Kernel", [
(cv2.MORPH_OPEN, "Opening"),
(cv2.MORPH_CLOSE, "Closing"),
(cv2.MORPH_GRADIENT, "Gradient"),
(cv2.MORPH_TOPHAT, "Tophat"),
(cv2.MORPH_BLACKHAT, "Blackhat")
]),
(cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5)), "Cross Kernel", [
(cv2.MORPH_OPEN, "Opening"),
(cv2.MORPH_CLOSE, "Closing"),
(cv2.MORPH_GRADIENT, "Gradient"),
(cv2.MORPH_TOPHAT, "Tophat"),
(cv2.MORPH_BLACKHAT, "Blackhat")
])
]
# 4. 연산 결과를 저장할 리스트
images_and_titles = []
# 각 커널과 연산자에 대해 계산
for kernel, kernel_name, operations in kernels_and_operations:
for op_type, op_name in operations:
result = cv2.morphologyEx(binary_image, op_type, kernel)
title = f"{op_name} ({kernel_name})"
images_and_titles.append((result, title))
# 5. 결과 시각화
plt.figure(figsize=(20, 15))
fs = 18
# 이미지 출력
for i, (image, title) in enumerate(images_and_titles):
plt.subplot(3, 5, i + 1)
plt.title(title, fontsize=fs)
plt.imshow(image, cmap='gray', interpolation='nearest')
plt.axis("off")
plt.tight_layout()
plt.show()